Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Allergy, Asthma & Immunology Research ; : 42-55, 2020.
Article in English | WPRIM | ID: wpr-762184

ABSTRACT

PURPOSE: Various immune cells, including eosinophils and neutrophils, are known to contribute to the development of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the current understanding of the role of neutrophils in the development of CRSwNP still remains unclear. Therefore, we investigated risk factors for refractoriness of CRSwNP in an Asian population. METHODS: Protein levels of 17 neutrophil-related mediators in nasal polyps (NPs) were determined by multiplex immunoassay, and exploratory factor analysis using principal component analysis was performed. Immunofluorescence analysis was conducted to detect human neutrophil elastase (HNE) or myeloperoxidase (MPO)-positive cells. Tissue eosinophilic nasal polyp (ENP) and tissue neutrophilia (Neu(high)) were defined as greater than 70 eosinophils and 20 HNE-positive cells, otherwise was classified into non-eosinophilic nasal polyp (NENP) and absence of tissue neutrophilia (Neu(low)). RESULTS: In terms of disease control status, NENP-Neu(low) patients showed the higher rate of disease control than NENP-Neu(high) and ENP-Neu(high) patients. Linear by linear association demonstrated the trend in refractoriness from NENP-Neu(low) to NENP-Neu(high) or ENP-Neu(low) to ENP-Neu(high). When multiple logistic regression was performed, tissue neutrophilia (hazard ratio, 4.38; 95% confidence interval, 1.76-10.85) was found as the strongest risk factor for CRSwNP refractoriness. Additionally, exploratory factor analysis revealed that interleukin (IL)-18, interferon-γ, IL-1Ra, tumor necrosis factor-α, oncostatin M, and MPO were associated with good disease control status, whereas IL-36α and IL-1α were associated with refractory disease control status. In subgroup analysis, HNE-positive cells and IL-36α were significantly upregulated in the refractory group (P = 0.0132 and P = 0.0395, respectively), whereas MPO and IL-18 showed higher expression in the controlled group (P = 0.0002 and P = 0.0009, respectively). Moreover, immunofluorescence analysis revealed that IL-36R⁺HNE⁺-double positive cells were significantly increased in the refractory group compared to the control group. We also found that the ratio of HNE-positive cells to α1 anti-trypsin was increased in the refractory group. CONCLUSIONS: Tissue neutrophilia had an influence on treatment outcomes in the Asian CRSwNP patients. HNE-positive cells and IL-36α may be biomarkers for predicting refractoriness in Asians with CRSwNP. Additionally, imbalances in HNE and α1 anti-trypsin may be associated with pathophysiology of neutrophilic chronic rhinosinusitis.


Subject(s)
Humans , Asian People , Biomarkers , Eosinophils , Fluorescent Antibody Technique , Immunoassay , Interleukin 1 Receptor Antagonist Protein , Interleukin-18 , Interleukins , Leukocyte Elastase , Logistic Models , Nasal Polyps , Necrosis , Neutrophils , Oncostatin M , Peroxidase , Principal Component Analysis , Rhinitis , Risk Factors , Sinusitis
2.
Biomolecules & Therapeutics ; : 447-453, 2013.
Article in English | WPRIM | ID: wpr-202595

ABSTRACT

Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent CoCl2. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus CoCl2 conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus CoCl2. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus CoCl2 upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.


Subject(s)
Humans , Hypoxia , Chondroitin Sulfate Proteoglycans , Chondroitin Sulfates , Chondroitin , Neurites , Neurons , Protein Kinase C , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL